Grad-div stabilization for the time-dependent Boussinesq equations with inf-sup stable finite elements
نویسندگان
چکیده
منابع مشابه
Grad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements
The approximation of the time-dependent Oseen problem using inf-sup stable mixed finite elements in a Galerkin method with grad-div stabilization is studied. The main goal is to prove that adding a grad-div stabilization term to the Galerkin approximation has a stabilizing effect for small viscosity. Both the continuous-in-time and the fully discrete case (backward Euler method, the two-step BD...
متن کاملDifferential geometry and multigrid for the div-grad, curl-curl and grad-div equations
This paper is concerned with the application of principles of differential geometry in multigrid for the div-grad, curl-curl and grad-div equations. First, the discrete counterpart of the formulas for edge, face and volume elements are used to derive a sequence of a commuting edge, face and volume prolongator from an arbitrary partition of unity nodal prolongator. The implied coarse topology an...
متن کاملGrad-div stablilization for Stokes equations
In this paper a stabilizing augmented Lagrangian technique for the Stokes equations is studied. The method is consistent and hence does not change the continuous solution. We show that this stabilization improves the well-posedness of the continuous problem for small values of the viscosity coefficient. We analyze the influence of this stabilization on the accuracy of the finite element solutio...
متن کاملA Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations
This article studies two methods for obtaining excellent mass conservation in finite element computations of the Navier-Stokes equations using continuous velocity fields. With a particular mesh construction, the Scott-Vogelius element pair has recently been shown to be inf-sup stable and have optimal approximation properties, while also providing pointwise mass conservation. We present herein t...
متن کاملInf-sup Stable Nonconforming Finite Elements of Higher Order on Quadrilaterals and Hexahedra
Abstract. We present families of scalar nonconforming finite elements of arbitrary order r ≥ 1 with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order r − 1 form inf-sup stable finite element pairs of order r for the Stokes problem. The well-known elements by Rannacher and Turek are recover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2019
ISSN: 0096-3003
DOI: 10.1016/j.amc.2018.12.062